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Abstract

Large language models (LLMs) have demonstrated competence in various
syntactic and pragmatic tasks. However, it is unclear whether LLMs can
leverage their pragmatic inference abilities in syntactic processing. In
addition, it remains unclear whether improvements in pragmatic abilities
with larger model sizes also translate to better prediction of human reading
times. In this study, we first test whether LLMs can use pragmatic inferences
to make attachment decisions of ambiguous relative clauses in English. We
then examine their abilities to predict human reading time. Our results
suggest that larger and more recent models are in fact able to use their
pragmatic inference ability in downstream syntactic processing, but among
those models that can, larger and instruction-tuned models do not always
have the best psychometric power for predicting reading time.

1 Introduction

Since the introduction of large language models (LLMs), researchers have sought to evaluate
their linguistic abilities in a variety of respects. Whereas early results revealed success in
certain areas pertaining to syntactic competence (Linzen et al., 2016; Futrell et al., 2019;
Warstadt et al., 2020, inter alia), pragmatics has historically proven to be more challenging
for LLMs, plausibly due to the fact that it requires the integration of inference, real-world
knowledge, and contextual cues (Chang & Bergen, 2024). That notwithstanding, whereas
early transformer models (e.g., GPT-2) struggle with certain pragmatic tasks such as infer-
ring discourse coherence relations between clauses (Beyer et al., 2021), more recent LLMs
have demonstrated the ability to draw pragmatic inferences across a range of phenomena
(Hu et al., 2023, inter alia). Central to the present study are findings that show that humans
not only draw coherence-based pragmatic inferences but also leverage them in sentence pro-
cessing tasks such as RC attachment (Rohde et al., 2011; Hoek et al., 2021). Although various
studies have demonstrated the syntactic and pragmatic abilities of LLMs independently, to
our knowledge none have shown that recent models are able to leverage their pragmatic
inference abilities to guide syntactic processing (cf. Davis & van Schijndel (2020a)).

Larger LLMs tend to perform better than smaller ones in a variety of pragmatic tasks.
Specifically, a sharp increase in performance is observed at the 1-billion-parameter threshold,
whereas little difference is observed among models above and below this size (Hu et al.,
2023). In contrast, larger models do not necessarily have better abilities to predict human
reading time when difficult syntactic constructions are processed (Oh & Schuler, 2023; Shain
et al., 2024; Kuribayashi et al., 2024). Here, we ask whether this generalization holds for
sentence processing tasks that rely on pragmatic inferences, i.e., whether or not larger
models exhibit better psychometric predictive power for such tasks due to their enhanced
pragmatic abilities. To address this question, we examine the attachment bias in English
relative clauses (RCs) with potentially ambiguous attachment sites, which has been shown
to be sensitive to pragmatic inferences drawn earlier in the sentence (Rohde et al., 2011;
Hoek et al., 2021).
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English has a default low attachment bias for ambiguous RCs (Frazier & Clifton, 1996;
Carreiras & Clifton, 1999, inter alia). For instance, although the RC in (1a) can be used to
modify either noun phrase (NP) in the complex NP structure “the children of the musicians,”
English speakers are more likely to judge that it is the musicians, rather than the children,
who are arrogant and rude. This preference for the low attachment site is commonly
accounted for by the structurally shorter distance between the RC and the low NP as
compared to the high NP (Frazier & Fodor, 1978).

1. (a) Melissa babysits the children of the musicians who are arrogant and rude.
(b) Melissa detests the children of the musicians who are arrogant and rude.

However, there is reason to expect that this bias might shift in examples like (1b), despite the
only difference with (1a) being the matrix verb. The rationale unfolds in the following three
steps. First, implicit causality (IC) verbs such as “detest” in (1b) create a strong expectation
that an explanation of the event it describes will ensue (Kehler et al., 2008). Second, the
immediately following RC can be employed by the speaker to convey an explanation. Lastly,
“detest”, an object-biased IC verb, carries a strong bias toward an ensuing explanation
to be about its direct object–“the children” in (1b)–which is the high attachment site for
the RC. Therefore, if comprehenders are able to integrate these three pieces of pragmatic
information and use them to inform a syntactic processing decision, we would expect a
greater bias toward high attachment in object-biased IC contexts than in nonIC contexts,
the latter of which create neither a strong expectation for an upcoming explanation nor
a strong expectation that any such explanation would be about the direct object. These
predictions were confirmed in an offline sentence completion task and a self-paced reading
task (Rohde et al., 2011): On the production side, human participants were more likely to
produce an explanation-providing RC when an IC verb was used than when a nonIC verb
was used, which in turn led to more modifications of the high NP. Further, the results of
the self-paced reading task provided even stronger evidence: participants incorporated this
pragmatic inference to predict the attachment site, even before they encountered the full RC.
Note that this pragmatic inference about the explanation is not mandated by any syntactic
relationship or other linguistic felicity requirement that applies to the sentence. This can be
seen in (2), which is likewise perfectly felicitous even though it will typically not convey an
inference analogous to that in (1b), i.e., that causally relates Melissa’s detesting to the place
where the children live.

2. Melissa detests the children of the musicians who live in La Jolla.

While humans use pragmatic inference during sentence processing, it is not clear whether
LLMs show similar evidence of being able to integrate and use pragmatic information in
making syntactic attachment decisions. In addition, although studies have examined the
correlation between the next-word log probability and human reading in syntactic tasks, it
is also unclear whether results concerning the predictive power of language models can be
generalized to sentence processing tasks that are driven by pragmatic inferences.

In Experiment 1, we test whether the more recent LLMs demonstrate the ability to use this
pragmatic inference in making RC attachment decisions. In Experiment 2, we examine
whether these models can quantitatively predict human reading times for these sentences.

2 Experiment 1: Deciding relative clause attachment site

Previous studies with earlier non-transformer-based models have shown mixed results in
terms of the models’ default attachment preference for ambiguous RCs. For instance, Davis
& van Schijndel (2020b) showed that recurrent neural network (RNN) LMs exhibit a low
attachment preference for ambiguous relative clauses in English. This cannot be taken as
evidence that models have learned the human-like syntactic preference, however, since the
LMs also exhibited a low attachment bias for languages that are known to have a default
high attachment bias, such as Spanish. Likewise, Kamerath & De Santo (2025) showed that
models also failed to show the human-like attachment bias of ambiguous RCs in Italian,
while the English results were mixed in terms of attachment bias and the effect of lexical
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items on these preferences. More relevant to the current inquiry, there has been no evidence
supporting neural LMs’ sensitivity to pragmatic inferences that should, in theory, alter
the syntactic attachment bias. Davis & van Schijndel (2020a) found that long short-term
memory networks (LSTMs) failed to use the causal relation triggered by IC verbs in RC
attachment. Interestingly, the larger transformer-based GPT-2 XL also did not show the
effect of IC verbs in syntactic processing, even though it was sensitive to IC bias in other
tasks, such as pronoun resolution.

Therefore, in this experiment, we use sentence pairs like those in (1) to test more recent
LLMs in their ability to use pragmatic inferences, as triggered by the IC verbs, to guide the
attachment decision of ambiguous relative clauses.

2.1 Methods

2.1.1 Models

We evaluated the performance of five models that vary in size and training methods:
two pre-trained base models from the Llama model families, namely Llama-3.2-1B (1.23B
parameters) and Llama-3.2-3B (3.21B parameters), the instruction-tuned version of the two
models, Llama-3.2-1B-Instruct and Llama-3.2-3B-Instruct, and the GPT-2 model (Radford
et al., 2019, 124M parameters). The two Llama base models differ minimally from the two
Instruct models, primarily in the lack of supervised fine-tuning and reinforcement learning
with human feedback (RLHF). All models were accessed through Hugging Face.

2.1.2 Stimuli

Sixty pairs of sentences following the format of (3) were created, where one sentence in
each pair has an IC verb as the matrix predicate and one has a nonIC verb. All verbs were
taken from Rohde et al. (2011), and each verb occurs three times, each time paired with a
different verb. In addition, 20 of the 60 pairs of sentences were identical to those used in
the self-paced reading task in Rohde et al. (2011), and the remaining 40 pairs were newly
created. This was designed to prevent the possibility that the models had seen the stimuli
used in the original study during training.

As in (3), the direct object of the main verb is always a complex NP containing a singular
NP and a plural NP, both of which are the possible attachment sites for the RC, followed by
the relative pronoun who. This resembles the setup of the self-paced reading task in Rohde
et al. (2011), where human participants did not see the full RC but anticipated which NP the
RC would modify based on the verb type.

3. (a) Melissa detests the children of the musician who
(b) Melissa babysits the children of the musician who

2.1.3 Task

We obtained the raw log probability of each of the possible auxiliary verbs that agree with
either the number of the high NP or of the low NP (i.e., “is” and “are”, respectively, in the
example below).

Sentence: Melissa detests/babysits the children of the musician who is/are

As in the self-paced reading task in Rohde et al. (2011), this design directly probes whether
the models incorporate pragmatic inference to predict the next word and make the attach-
ment decision before an RC is even seen.

2.1.4 Evaluation

We calculated the difference in the log probabilities of each of the two auxiliary verbs in each
sentence by subtracting the log probability of the critical word that agrees with the second
NP in number (i.e., the low attachment site), from the log probability of the critical word that
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Figure 1: Mean log probability difference between the critical word that agrees with the
high NP and that agrees with the low NP given the two verb types.

agrees with the first NP in number (i.e., the high attachment site), i.e., log(phigh)− log(plow).
Positive values indicate that the model prefers the high attachment over the low attachment.

2.2 Results

Fig. 1 shows the mean difference between the log probability of the critical word revealing a
high attachment preference and that of the word revealing a low attachment preference. All
models, except GPT-2, show a strong low attachment bias when nonIC verbs were used,
where the mean log probability difference is negative. Yet, for at least some models, this bias
is mitigated with IC verbs, where the mean log probability difference of the critical verb that
shows the high/low attachment bias is smaller, suggesting there is a greater high attachment
bias triggered by the IC verb. This is in line with human results, where the high attachment
bias was 36.5% when nonIC verbs were used, revealing a low-attachment preference, but
was increased to 50.6% when IC verbs were used (Rohde et al., 2011). Although most models
show a similar effect of verb type as human participants, they nonetheless still strongly
prefer the low attachment site even in the presence of an IC verb, as reflected in negative
values in both verb type conditions in Fig. 1.

We fit a Bayesian mixed-effects linear regression predicting the log probability differ-
ence from the main effect of verb type and the maximal random-effects structure that
allowed the model to converge, which includes the by-item random intercept. There was
a significant main effect of verb type for all four Llama models, such that the log prob-
ability difference was lower when a nonIC verb was used than when an IC verb was
used (Llama-3.2-1B: β = −0.66, CrI = [−1.06,−0.26]; Llama-3.2-1B-Instruct: β = −0.74,
CrI = [−1.07,−0.42]; Llama-3.2-3B: β = −0.39, CrI = [−0.70,−0.10]; Llama-3.2-3B-
Instruct: β = −0.38, CrI = [−0.66,−0.08]). This result suggests that for the Llama models,
the high attachment preference is stronger when an IC verb is used than when a nonIC
verb is used. However, the effect of verb type was not significant for GPT-2 (β = −0.17,
CrI = [−0.46, 0.11]).

2.3 Discussion

The results show that all Llama models show a greater bias toward the high attachment site
when an IC verb is used. Moreover, the content of the RC does not affect the attachment
decision since it is not presented to the models. Therefore, these results suggest that the
models anticipate the possibility of an explanation and incorporate that expectation in
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predicting the attachment site for the RC and ultimately the auxiliary that follows the
relative pronoun. However, GPT-2 does not show the expected behavior, suggesting that
it cannot use pragmatic inference to make RC attachment decisions. In addition, unlike
human participants, all models show a low-attachment preference in the IC verb condition,
suggesting that there might still be other RC processing differences between humans and
LLMs. Taken together, these results suggest that larger models can use pragmatic inference
to guide downstream syntactic processing in ways that pattern with the behavior of human
participants, whereas smaller models are less capable in this regard.

3 Experiment 2: Predicting reading time

It has been shown in the sentence processing literature that the more probable a word
is in the context, the less time it takes for people to read it. This is quantified by the
information-theoretic measure of surprisal, which is the negative log probability of the
word, i.e., − log P(xi|x<i). The surprisal theory predicts that the processing difficulty of a
word is proportional to its surprisal (Hale, 2001; Levy, 2008).

Studies have used language models to estimate surprisal and have shown that the relation-
ship between reading time and surprisal is linear (Smith & Levy, 2013). In addition, the
model’s predictive power for human reading has been used to measure the model’s resem-
blance to the underlying psychological mechanisms of human sentence processing (Frank &
Bod, 2011; Fossum & Levy, 2012; Goodkind & Bicknell, 2018). It has been shown that models
with better ability to predict next words, as indicated by a lower perplexity value, have
better predictive power (Fossum & Levy, 2012; Goodkind & Bicknell, 2018; Wilcox et al.,
2020). However, Huang et al. (2024) challenged the explanatory power of surprisal estimates
from LLMs in accounting for processing difficulties across a range of syntactically complex
sentences, including RCs with ambiguous attachment sites. Specifically, even though the
models they examined capture processing difficulties, they systematically underestimate
the magnitude of the effect, suggesting that the role of predictability might be smaller
than assumed by the surprisal theory in online sentence processing. In addition,models
trained on extremely large datasets are not always better in predicting reading time, and the
relationship between perplexity and their predictive power is sometimes reversed, due to
their “superhuman” ability in next-word prediction (Oh & Schuler, 2023; Shain et al., 2024).
Similarly, Kuribayashi et al. (2024) showed that the predictive power of instruction-tuned
LLMs on reading time is worse than that of base LLMs.

Hence, if the negative relationship between perplexity and psychometric predictive power
holds in larger models, then one might expect Llama-3.2-3B and Llama-3.2-3B-Instruct to be
worse at predicting human reading time than their corresponding 1B Llama models. On
the other hand, if the larger number of parameters in the 3B models results in enhanced
pragmatic inference abilities, and these abilities are leveraged to make better syntactic
predictions for the types of stimuli examined here, then one might expect to see the larger
models perform better at predicting reading time.

3.1 Methods

3.1.1 Models

We evaluated the same five models as in Experiment 1, including Llama-3.2-1B, Llama-3.2-
1B-Instruct, Llama-3.2-3B, Llama-3.2-3B-Instruct, and GPT-2.

3.1.2 Stimuli

All 40 sentences from the self-paced reading task in Rohde et al. (2011) were used, comprising
20 pairs of IC and nonIC verbs with an RC that is intended to provide an explanation to the
event described in the matrix clause. There were 920 reading-time regions, and each region
consisted of a minimum of a single word to a maximum of three words.
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3.1.3 Evaluation

We obtained the surprisal of a word,1 which is the negative log probability of that word in
the sentence, i.e., − log P(wi|w<i), from each model.

We used generalized additive models (GAM, Wood, 2017) to predict the average reading
time across participants in the self-paced reading study in Rohde et al. (2011) from the
surprisal value obtained from each model.2 Since some words are tokenized into multiple
subtokens and some regions in the self-paced reading study contain multiple words, we
summed the surprisal of each token within the word and region, given the chain rule. In
addition to surprisal, the regression models also include the effects of word length and
frequency. Since word length and frequency also affect reading time, these factors were
commonly included as control variables to delineate the effect of surprisal on reading time
(e.g., Frank & Bod, 2011; Smith & Levy, 2013; Goodkind & Bicknell, 2018). In addition, we
also included these measures of the two preceding words as predictors of the reading time
of the current word to capture the possible spillover effects (Smith & Levy, 2013).

The unigram surprisal was used as the frequency measure, similar to Shain (2024). This
measure was chosen since for regions that only contain one word, the unigram surprisal
is proportional to the negative log frequency that is commonly used in other reading time
studies (e.g., Wilcox et al., 2020; Oh & Schuler, 2023). Yet, in the current study, there are
regions with multiple words that typically consist of a shorter but frequent function word
and a longer and less frequent content word, as in noun phrases like “the teacher.” Hence,
we added the surprisal of each unigram wi in the multi-word region xi, i.e., S(xi) = ∑i S(wi),
where S(xi) represents the surprisal of that region and S(wi) represents the surprisal of
each word in that region. Aggregating the unigram surprisal takes into account all words in
the region but weights the effect of less frequent content words more heavily than that of
more frequent function words.3 To obtain the unigram surprisal of each word, we measured
the frequency count using the Corpus of Contemporary American English (COCA, Davies,
2008) and then calculated its probability by dividing the raw frequency count by the total
number of words in the COCA dataset. The surprisal was obtained by taking the negative
log probability: S(wi) = − log P(wi) = − log #wi

|V| , where #wi is the raw frequency count of
the word wi, and |V| is the total number of words in COCA.

We evaluated each LLM by comparing the full model to a baseline model that predicts
reading time from the control variables, including the word length and the frequency (as
measured by the unigram surprisal). Following the previous literature (e.g., Goodkind &
Bicknell, 2018; Wilcox et al., 2020), the difference between the log-likelihood of the full model
and the baseline model, i.e., ∆LogLik, is used to capture the model’s psychometric predictive
power. In addition, we calculated each model’s perplexity to assess its next-word prediction
accuracy and examine how this correlates with its ability to predict human reading time. A
lower perplexity suggests that the model is more accurate in predicting the next word. The
model’s perplexity was calculated as the exponential of the average surprisal across all N
regions, i.e., e

1
N ∑i S(xi) , where S(xi) represents the surprisal of each region xi.

Moreover, we also fit a GAM model to the measures in the non-critical regions and then use
that model to predict the reading time of the critical regions, which include the auxiliary
verb of the RC and the two spillover regions immediately after. We used root mean squared
error (RMSE) to measure the difference between the predicted reading time and the actual

1All log probabilities in the current study are base e, and thus surprisal is in nats instead of bits.
2The GAM model was run using the mgcv package (Wood, 2011) in R (R Core Team, 2022).
3An alternative way to measure the frequency of multi-words in a single region, xi, will be to use

the negative conditional probability of the current word given the previous word(s) as the surprisal
value for the second word w2 and third word w3 in the region, i.e., S(xi) = S(w1) + S(w2) + S(w3) =
− log P(w1)− log P(w2|w1)− log P(w3|w2, w1). Instead of using the unigram surprisal for all three
words, the negative log probability of − log P(w2|w1) and − log P(w3|w2, w1) can be obtained from
a bigram and a trigram model, respectively. This would better capture the frequency of the entire
region, taking into account the relationship between words in that region. We will adapt this method
for future work.
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Figure 2: The relationship between reading time and surprisal. Each line represents the
regression from the GAM model.

reading time. The smaller the RMSE value, the better the model is at predicting reading
time in the critical region.

3.2 Results

Fig. 2 shows the relationship between reading time and surprisal, as fit by the GAM
model. This captures the effect of surprisal on reading time above and beyond the effects of
frequency and word length. The relationship is close to linear, especially when the surprisal
is higher.

Fig. 3 shows the relationship between the model’s predictive power, as measured by
∆LogLik, and its performance in next word prediction, as measured by perplexity. Based
on the results of the five models in the current study, the relationship between perplexity
and ∆LogLik is negative, suggesting that the better the model predicts the next word (i.e.,
the lower the perplexity is), the better it simulates reading time (i.e., the larger the ∆LogLik
is). This negative relationship is similar to the findings with smaller non-transformer-based
models (Frank & Bod, 2011; Goodkind & Bicknell, 2018; Wilcox et al., 2020) but contrary
to the findings with more recent LLMs where the relationship is reversed (Kuribayashi
et al., 2024; Oh & Schuler, 2023). This negative tendency seems to be driven by the high
∆LogLik and relatively low perplexity of Llama-3.2-3B-Instruct, while the ∆LogLik of the
other Llama models is similar. GPT-2, on the other hand, has the largest perplexity and
smallest ∆LogLik, suggesting that it is worse in predicting the next word and predicting
reading times, as compared to the Llama models.

Lastly, we compared the root mean squared error (RMSE) of each model when fitting the
GAM model to the measures in the non-critical regions to predict the reading time in the
critical regions. GPT-2 had the largest RMSE value (107.81), followed by the two instruction-
tuned Llama models (Llama-3.2-1B-Instruct: 99.36; Llama-3.2-3B-Instruct: 102.47). The two
base Llama models exhibited relatively low RMSE values (Llama-3.2-1B: 89.81; Llama-3.2-3B:
93.06), suggesting that the relationship between surprisal and reading time in non-critical
regions generalized more effectively to the critical regions, especially for the smaller model.

3.3 Discussion

The inverse relationship between perplexity and ∆LogLik does not align with the findings
in Kuribayashi et al. (2024) or Oh & Schuler (2023), both of which claim that recent LLMs
with lower perplexity tend to have worse psychometric predictive power. In fact, the larger
instruction-tuned model, Llama-3.2-3B-Instruct, seems to have lower perplexity and better
psychometric predictive power than the other smaller or base models. Since we only tested
on five models on 40 sentences, where there were only two pairs that minimally differ in
terms of their sizes and two pairs that minimally differ in terms of whether instruction-
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Figure 3: The ∆log likelihood against model perplexity.

tuning is used, the conclusion about the potential effects of model size and instruction
tuning is preliminary, and we caution against over-interpreting these results. Below, we
sketch out some hypotheses that could potentially explain the mismatch between the results
in the current experiment and findings in the previous studies.

This difference with previous studies might be because the reading-time difference we
observed with human participants, especially in the critical disambiguating regions of the
auxiliary verb in the RC, was due to pragmatic inference. Thus, for models that fail to
capture the qualitative high attachment bias in the IC condition, such as GPT-2, which are
smaller models with higher perplexity, their psychometric predictive power will be worse
than those that capture the attachment bias. This possibility is supported by the relatively
high root mean squared error (RMSE) for GPT-2, suggesting that the relationship between
surprisal and human reading time in non-critical regions did not generalize well to the
critical region. Interestingly, larger instruction-tuned models, such as Llama-3.2-3B-Instruct,
performed worse than smaller base models like Llama-3.2-1B in predicting reading times
in the critical regions. This pattern is the opposite of what we observed when fitting the
model to the entire dataset, yet it aligns with the findings in Kuribayashi et al. (2024), which
suggest that instruction tuning may lead to a divergence from human reading behavior. In
this case, larger models with better pragmatic inference abilities might not always simulate
human reading time better. It is possible that the contextual factors required to decide the
RC attachment site might not be fully captured by LLMs, leading to the modest correlation
between surprisal estimated by models and processing difficulty in humans, as suggested in
Huang et al. (2024).As mentioned above, these are speculative explanations of the observed
patterns, supported by evidence from only a small subset of models, and future work needs
to include more models with different sizes and use more sentences to reach a definitive
conclusion.

4 General Discussion

The results of the experiments presented here suggest that LLMs have the ability to make
pragmatic enrichments, with larger and more recent models demonstrating sensitivity to the
influence of pragmatic inferences on syntactic processing. Overall, our findings contribute
to the positive evidence of the pragmatic abilities of LLMs and their ability to leverage
pragmatic inference in guiding downstream processing tasks.

The results from Experiment 1 indicate that GPT-2 fails to bring the pragmatic factors
described herein to bear in predicting the likely attachment site for an ensuing RC, a result
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that is predicted from the fact that it appears to lack the ability to draw the pragmatic
inference in the first place. This result in fact aligns with prior studies showing its at-chance
performance on other pragmatic tasks (Beyer et al., 2021; Hu et al., 2023). In contrast, the
Llama models, regardless of their sizes and whether additional instruction-tuning is used,
all demonstrate behavior consistent with their ability to use pragmatic inferences in the
downstream tasks.

The reading time predictions in Experiment 2 indicate that models lacking pragmatic infer-
ence abilities, which tend to be smaller models, also exhibit reduced psychometric validity
in simulating human reading behavior in a sentence processing task that is modulated by
pragmatic inferences. In contrast, models that appear to possess such pragmatic abilities
show mixed results in their ability to predict reading times: While there appears to be a
negative relationship between the model’s perplexity and the ∆LogLik, with Llama-3.2-3B-
Instruct having the best psychometric predictive power among all attested Llama models,
smaller base models are better at generalizing the reading time in the non-critical region to
predict reading time in the critical region. Future studies should evaluate a wider range of
models, varying training objectives and model sizes, to confirm this finding. In addition,
since Experiment 2 was based on only 20 pairs of stimuli from the original Rohde et al.
(2011) study, incorporating a greater number of items with comparable human results would
further strengthen the findings.
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